Las variables de entrada y salida del proceso son de diferentes tipo:

 

Variable controlada. Es la cantidad o condición que se mide y controla. Normalmente la variable controlada es la salida del sistema y cambia con el progreso del proceso. Por Ejemplo:

- Temperatura de salida de la corriente de proceso en el calentador de la Fig. 1.1
- La Composición de salida en un sistema de reacción.


Variable manipulada.
Es la cantidad o condición modificada por el controlador a fin de afectar la variable controlada. Estas afectan el curso del proceso y pueden ser medidas y cambiadas a voluntad. Por Ejemplo:

- El caudal de vapor en el calentador de la Fig. 1.1
- La Composición de entrada en un sistema de reacción.

 

Perturbaciones. Es una señal que tiende a afectar adversamente el valor de la salida del sistema. Estas afectan directamente el curso del proceso pero no pueden ser cambiadas a voluntad. Por Ejemplo:
- Cambio repentino en el caudal de entrada en un sistema de reacción.


Las perturbaciones pueden ser:
- Perturbaciones Internas: Cuando se generan dentro del sistema
- Perturbaciones Externas: Cuando se generan fuera del sistema y constituye una entrada.

 

1.2 Variables y Perturbaciones

Variables intermedias. Son variables relacionadas con el curso del proceso solo indirectamente. Por Ejemplo, la temperatura del vapor en el tanque de calentamiento o la temperatura del agua de enfriamiento en un sistema de reacción.

 

Parámetros. Son las variables que toman un valor fijo durante el proceso. Por Ejemplo, la presión de operación en un reactor.


Control. Significa medir el valor de la variable controlada del sistema y aplicar al sistema la variable manipulada para corregir o limitar la desviación del valor medido, respecto al valor deseado.

Planta. Una planta es un equipo, quizá simplemente un juego de piezas de una máquina, funcionando conjuntamente, cuyo objetivo es realizar una operación determinada. En este libro llamaremos planta a cualquier objeto físico que deba controlarse (como un horno de calentamiento, un reactor químico o columna de destilación).

 

Proceso. El diccionario Merrian-Webster define proceso como una operación o desarrollo natural, caracterizado por una serie de cambios graduales, progresivamente continuos, que se suceden uno a otro de un modo relativamente fijo, y que tienden a un determinado resultado o final; o a una operación voluntaria o artificial progresivamente continua, que consiste en una serie de acciones controladas o movimientos dirigidos sistemáticamente hacia determinado resultado o fin. En este libro se denomina proceso a cualquier operación que deba controlarse. Ejemplos de ellos son los procesos químicos, económicos y biológicos.


Sistemas. Es la combinación de componentes que actúan conjuntamente y cumple determinado objetivo. Un sistema no está limitado a objetivos físicos. El concepto de sistema puede aplicarse a fenómenos dinámicos abstractos, como los que se encuentran en economía. Por tanto, el término sistema hay que interpretarlo como referido a sistemas físicos, biológicos, económicos y otros.


El sistema de procesos químicos. Es un conjunto de procesos físicos y químicos ínter relacionados y medios físicos qué que lo implementan. Todo sistema de proceso tiene entradas y salidas. Entradas puede ser materia prima, temperatura, concentración etc. Un sistema está sujeto usualmente a señales o perturbaciones que para compensarlas se hace uso de correcciones o acciones de control. En este libro se denominará a un
sistema de procesos químicos como sistema de procesos o simplemente como proceso.

Para visualizar un sistema de proceso simple vamos a considerar el siguiente proceso de calentamiento:


Se dispone de una corriente de liquido a razón de W (kg/h) y una temperatura Ti (oK). Se desea calentar esta corriente hasta una temperatura TR (oK) según el sistema de calentamiento mostrado en la Fig. 1.1. El fluido ingresa a un tanque bien agitado el cual esta equipado con un serpentín de calentamiento mediante vapor. Se asume que la agitación es suficiente para conseguir que todo el fluido en el tanque esté a la misma temperatura T. El fluido calentado es removido por el fondo del tanque a razón de W (kg/h) como producto de este proceso de calentamiento. Bajo estas condiciones la masa de fluido retenido en el tanque permanece constante en el tiempo y la temperatura del efluente es la misma que del fluido en el tanque. Por un diseño satisfactorio esta temperatura debe ser TR. El calor específico del fluido es Cp, se asume que permanece constante, independiente de la temperatura.

 

Proceso de Calentamiento de un Líquido

Control Automático: Introduccion

El control automático ha jugado un papel vital en el avance de la ciencia y de la iingeniería, constituyéndose parte integral e importante de los procesos industriales y de manufactura modernos, resultando esencial en operaciones industriales como el control de presión, temperatura, humedad y viscosidad, y flujo en las industrias de transformación.


Los procesos se controlan con mayor precisión para dar productos más uniformes y de más alta calidad, mediante la aplicación del control automático, lo cual con frecuencia representa mayores ganancias. El control automático también tiene grandes ventajas con ciertas operaciones remotas, peligrosas y rutinarias. Puesto que el beneficio del proceso es por lo común la ventaja más importante que se busca al aplicar el control automático, la calidad del control y su costo se deben comparar con los beneficios económicos y técnicos esperados del proceso.

 


El primer trabajo significativo en control automático fue el regulador centrífugo de James Watt para el control de velocidad de una máquina de vapor, en el siglo dieciocho. En 1922 Minorsky uso las ecuaciones diferenciales que describen al sistema para demostrar la estabilidad del mismo. En 1932 Nyquist desarrolló un procedimiento para determinar la estabilidad de los sistemas de lazo cerrado sobre la base de la respuesta de lazo abierto con excitación sinusoidal en régimen permanente. En 1934 Hazen introdujo el término de servomecanismos y desarrolló el diseño de los mismos. Durante la década de los cuarenta, los métodos de respuesta en frecuencia posibilitaron el diseño de sistemas lineales de control de lazo cerrado. De fines de los cuarenta a principios de los cincuenta, Evans desarrolló por completo el método del lugar de las raíces.



Los métodos de respuesta de frecuencia y del lugar de las raíces, que son el corazón de la Teoría Clásica de Control, llevan a sistemas que son estables y que satisfacen un conjunto de requerimientos de funcionamiento mas o menos arbitrarios. Tales sistemas son, en general, aceptables pero no óptimos. Desde fines de los cincuenta, el énfasis en problemas de diseño de sistemas de control se desplazó al diseño de un sistema óptimo.



Como las plantas modernas con muchas entradas y salidas, se van haciendo más y más complejas, la descripción de un sistema moderno de control requiere una gran cantidad de ecuaciones. La teoría de control clásica, que trata de sistemas con una entrada y una salida, se vuelve absolutamente impotente ante sistemas de múltiples entradas y salidas. Hacia 1960, gracias a la disponibilidad de las computadoras digitales, se hizo posible el análisis de sistemas complejos en el dominio del tiempo; desde entonces se ha desarrollado la Teoría de Control Moderna, basada en el análisis y síntesis en el dominio del tiempo, utilizando variables de estado, con lo que se posibilita afrontar la complejidad creciente de las plantas modernas y los estrictos requisitos de exactitud, peso y costo.



Los desarrollos más recientes en la teoría de control moderna están en el campo del control óptimo de sistemas, tanto determinísticos como estocásticos, así como en sistemas de control complejos con adaptación y aprendizaje. Las aplicaciones más recientes de la teoría de control moderna incluyen sistemas no ingenie riles como los de biología, biomedicina, economía y socioeconomía.

Página 39 de 39